skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Viven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The long‐term state of stress in the subduction forearc depends on the balance between margin‐normal compression due to the plate‐coupling force and the margin‐normal tension due to the gravitational force on the margin topography. In most subduction margins, the outer forearc is largely in margin‐normal compression due to the dominance of the plate‐coupling force. The inner forearc's state of stress varies within and among subduction zones, but what gives rise to this variation is unclear. We examine the state of stress in the forearc region of nine subduction zones by inverting focal mechanism solutions for shallow forearc crustal earthquakes for five zones and inferring the previous inversion results for the other four. The results indicate that the inner forearc stress state is characterized by margin‐normal horizontal deviatoric tension in parts of Nankai, Hikurangi, and southern Mexico. The vertical and margin‐normal horizontal stresses are similar in magnitudes in northern Cascadia as previously reported and are in a neutral stress state. The inner forearc stress state in the rest of the study regions is characterized by margin‐normal horizontal deviatoric compression. Tension in the inner forearc tends to occur where plate coupling is shallow. A larger width of the forearc also promotes inner‐forearc tension. However, regional tectonics may overshadow or accentuate the background stress state in the inner forearc, such as in Hikurangi. 
    more » « less